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Abstract— In this paper a new approach is suggested for 
implementing fractional order differentiator in the desired 
frequency band based on frequency capacitance scaling. The 
process involves obtaining the rational approximate model of the 
fractional order differentiator using Matsuda method of 
approximation and then decomposing it by partial fraction 
expansion to obtain the circuit parameters (resistance and 
capacitance). If the frequency band of interest has now to be 
changed, only the capacitances of the resulting circuit are scaled 
proportionately. For the choice of the method of approximation 
and the approach for synthesis, emphasis has been given to 
accuracy of the model obtained and positive values of resistances 
and capacitances. The simulations have been performed using 
OrCAD Capture CIS simulator. 

Keywords- capacitance scaling; fractional order 
differentiator; Matsuda method. 

I.  INTRODUCTION 
An ideal fractional operator is defined as sα in the 

complex s-domain. The values 0 < α < 1 corresponds to the 
fractional order differentiator and the values -1 < α < 0 
corresponds to the fractional order integrator. The general 
characteristics of an ideal fractional operator is: Magnitude: 
20*α dB/dec. and Phase: (π/2)*α deg [1]. The characteristic 
features of an ideal fractional order filter cannot be realized 
with the three passive elements: the resistor, the capacitor and 
the inductor; because these elements can only reflect the 
behaviour of integer order filters. Hence, based on electrolytic 
process or using Lithium Hydrazinium Sulphate as dielectric 
realizations for fractional order filters is done [2]. The other 
way to realize fractional order filters is to obtain the integer 
order approximation [3]. This means a finite integer order 
transfer function is obtained whose characteristics closely fit 
the characteristics of an ideal fractional order filter using any 
of the filter approximation methods [4-9]. Stability, accuracy 
and order of the integer order model are the factors to be taken 
into consideration while chosing the rational approximation 
method. Further the integer order transfer function is 
decomposed to obtain the circuit parameters using partial 
fraction expansion or continued fraction expansion. In this 
way fractional order filter can be realized with the classical 
circuit elements. However not always the parameters obtained 
have positive values. In such a case where the circuit elements 

have negative values, negative impedance converter (NIC) can 
be used [10]. But the hardware realization becomes more 
complex as NICs can be built with active elements only. The 
accuracy of the circuit model lies wholely on the agreement of 
Laplace model with the characteristics of its ideal counterpart. 
These circuits which exhibit fractional behaviour are refered to 
as fractional order element (FOE) or fractance device in 
literature [11]. The main advantage of using the approach of 
finite element approximations for realization of fractional 
order filters is that the simulations required to do the analysis 
can be performed using the standard circuit simulators and 
also experimental studies can be done using known circuit 
elements.  

This paper proposes a new simple procedure for 
implementing the fractional order differentiator in the chosen 
frequency band of interest, each covering three decades, with 
the highest frequency band [1016 1019] rad/s. The  magnitude 
and phase characteristics of the transfer function remain 
unchanged. Also the order of the system obtained is low, 
which is beneficial for implementation purposes.  The design 
of an efficient circuit of fractional order differentiator, useful 
in signal processing [12], chaotic systems [13], bioengineering 
[14] and control systems [15] is made up classical passive 
elements (resistance and capacitance), connected in such a 
manner so as to be able to work in a higher frequency range. 
The number of branches in the circuit depends on the number 
of poles of the Laplace model. The integer approximation of 
fractional order filter is obtained by applying Matsuda 
technique. 

The content of the next sections are as follows: Matsuda 
technique and the basis of scaling a circuit model are discussed 
in Section II. The design procedure is presented in Section III. 
The simulations performed and the results are discussed in 
Section IV and the conclusion is in Section V. 

II. MATSUDA TECHNIQUE OF APPROXIMATION AND CIRCUIT 
SCALING 

A. Fractional order Differentiator Applying Matsuda 
Technique of Approximation. 

The Matsuda technique of approximation is based on 
calculating the gain of the fractional order system at different 
frequencies and finding a set of coefficients [5]. The 

Nitisha Shrivastava 
Student Member IEEE Division of ICE,  

NSIT, New Delhi, India–110078
nitishashrivastav@gmail.com

Pragya Varshney, Member IEEE
Division of ICE, NSIT

New Delhi, India 110078
pragya.varshney1@gmail.com

978-1-4673-9080-4/16/$31.00 ©2016 IEEE



268 ♦ Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH-16)

approximate integer order transfer function is developed for a 
specific frequency band [fL  fH] rad/s. 
where, fL is the lower frequency and fH is the higher 
frequency. 
The frequency points at which the gain is calculated lie within 
the specific frequency band. Now based on the gain and the 
coefficients calculated, approximate integer order system is 
obtained using Continued Fraction Expansion. 
  
 The Laplace representation fractional order differentiator is   

( ) (; 0 1)fD s sα α= < <                                                (1) 

A group of frequencies  rad/s, (1 )if i k≤ ≤   in the frequency 
band is chosen, where k  is the number of frequencies and 

L 1 Hf  =  and f  = kf f   
The coefficients 'ia s are calculated using eqn. (2), 
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The approximate integer order transfer function using the 
coefficients calculated is of the form 
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B. Scaling 
The frequency response of a fractional order element 
consisting of resistor (R), inductor (L) and capacitor (C) can 
be scaled in three different ways. They are:  
 

1) Magnitude scaling: The magnitude plot in the present 
frequency band is shifted up or down by scaling each 
component value in the circuit by a factor ‘a’. However there 
is no shift in the phase plot. The new scaled values are: 
[Rʹ=aR, Lʹ=aL, Cʹ=C/a]. 

 
2) Frequency scaling: The magnitude and the phase plot is 

shifted right or left from the present frequency band by scaling 

the frequency dependent component values in the circuit by a 
factor ‘b’. The new scaled values are: [ Rʹ=R, Lʹ=L/b, Cʹ=C/b]. 

 
3) Magnitude and frequency scaling: The magnitude plot 

is simultaneously shifted up or down in the present frequency 
band by a factor ‘a’ and right or left from the present 
frequency band by a factor ‘b' by scaling each component 
values. However the phase plot is shifted only right or left 
from the present frequency band by a factor ‘b'. The new 
scaled values are:  [Rʹ=aR, Lʹ=(a/b)L, Cʹ=C/(ab)]. 

The primed ones are the scaled values. 

III. DESIGN PROCEDURE 
The approximate model of fractional order differentiator for 

the frequency band [fL fH] rad/s obtained using Matsuda 
method in partial fraction expansion form is: 
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Equation (5) is analogous to admittance Y(jω) of an RC 

network. The network consists of a resistor and cascaded RC 
cells connected in parallel [16] as shown in Fig. 1. The 
number of branches in the circuit depends on the number of 
poles of the Laplace model. 
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Comparing (5) and (6), 
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Figure 1.  RC circuit model 

 
Now, for the circuit to work in different frequency bands,  

the value of the capacitances in the circuit are down scaled. 
The scaling factor for the capacitance is obtained as 10-m, 
where m is any positive integer depending on the frequency 
band of interest [fL*10m     fH*10m] rad/s; (fL is the starting 
frequency and fH = fL* 103). The values of all the resistance in 
the circuit remain unchanged.  

Using Matsuda method, the approximate integer order 
model of fractional order differentiator sα  (0.1 ≤ α ≤ 0.9) is 
developed in the partial fraction expansion form (eqn. (1)). 
The lower and higher frequencies are set as 101 rad/s and 105 
rad/s respectively and k=9. Then the circuit resistances and 
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capacitances according to eqn. (7) are obtained for the value of 
α = 0.1 as shown in Table I. 

 
TABLE I. CIRCUIT RESISTANCES & CAPACITANCES FOR FRACTIONAL 
ORDER DIFFERENTIATOR Sα  (α = 0.1)  IN THE FREQUENCY BAND  [101  104]  

 
sα s0.1 

Rp(Ω) 0.9163 
R1(Ω) 0.9273 
R2(Ω) 1.7050 
R3(Ω) 2.2232 
R4(Ω) 2.2676 

C1(mF) 0.0144 
C2(mF) 0.1440 
C3(mF) 1.4000 
C4(mF) 23.300 

 

IV. SIMULATION RESULTS 
Using the resistor and capacitor values obtained in Table 1, 

the magnitude and phase plots of the 0.1-differentiator s0.1 
obtained from the simulations using OrCAD Capture CIS 
simulator is shown in Fig. 2. It is seen that the plot exhibits 
2dB/dec rise and the phase is approximately 9 deg as desired 
in the frequency range [101 104] rad/s. 

 

 
 

Figure 2.  Bode plot of 0.1-differentiator sα (α=0.1) in the frequency band         
[101 104] obtained using RC values 

Now, choosing m=1 the scaled capacitances obtained for     
0.1-differentiator s0.1 are C1ʹ=1.4475μF, C2ʹ=0.0144mF, 
C3ʹ=0.14mF and C4ʹ=2.33mF in the frequency range [102 105] 
rad/s. Similarly choosing m= 3, 6, 9, 12 and 15, the scaled 
values of capacitances are calculated for the frequency range 
[104 107], [107 1010], [1010 1013], [1013 1016] and [1016 1019] 
respectively. Simulations with scaled capacitances for         
0.1-differentiator s0.1 are performed and it was observed that 
the frequency response plots were in correspondence to the 
frequency response plots of ideal 0.1-differentiator in the 
subsequent frequency ranges of three decade widths. 
The magnitude and phase plots of 0.1-differentiator s0.1 are 
shown in Figures 3 and 4 respectively. Both the responses are 
plotted for different frequency bands [101 104], [104 107], [107 
1010], [1010 1013], [1013 1016] and [1016 1019] respectively of 3 
decades each ranging from 101  to 1019, obtained by  scaling of 
capacitances. It is seen that the plots exhibit 2dB/dec rise in 

magnitude and approximately 9 deg (phase) in all the different 
frequency ranges. 
 

 
 

Figure 3.  Magnitude plots of 0.1-differentiator sα (α=0.1) for different 
frequency bands obtained by scaling of capacitances in the frequency band of 
interest 
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Figure 4.  a-f. Phase plots of 0.1-differentiator sα (α=0.1) for different 
frequency bands [101 104], [104 107], [107 1010], [1010 1013], [1013 1016] and 
[1016 1019] obtained by scaling of capacitances 
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Then simulations are performed for all values of α (0.1 ≤ α ≤ 
0.9) and frequency response plots obtained. It is observed that 
the magnitude plots exhibit 20α dB / decade rise for all values 
of α in the range [101 104] rad/s. Also, phase is 
correspondingly 90α degrees in each case in the same range. 
Simulations with scaled capacitances were perfomed and it 
was observed that frequency plots were in correspondence to 
the magnitude and phase plots of ideal fractional order 
differentiators for all values of α in the subsequent frequency 
ranges of three decade widths. 

V. CONCLUSION 
In this paper we have obtained circuit parameters of 

fractional order differentiator sα. The design procedure adopted 
here results in passive elements which are all positive as such 
there is no need of negative impedance converter, hence 
reducing the complexity of the hardware realization. Also the 
proposed design method has the following inherent advantages, 
viz.: the circuit has only one junction with one reference 
junction and no parameter assumptions have been done. Using 
the Matsuda method of approximation a vertical shift appears 
in the magnitude plots in different frequency ranges. This shift 
can be obtained by multiplying gain of G(s) by a factor of      
210 α m. These results validate the effectiveness of the proposed 
work and may be used for realization purposes. 
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