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Abstract— To have an accurate prediction of epileptic seizure and 
identification of the epileptogenic region is a difficult task. This 
paper utilizes scalp electroencephalogram to predict an epileptic 
seizure and detect an epileptogenic region. To detect 
epileptogenic region, the signals from five different regions of 
brain are taken into consideration. Forty-four non-linear features 
are extracted from eight frequency bands theta, θ, (4-8 Hz), 
alpha, α, (8-13 Hz), beta, β, (13- 30 Hz), gamma1, γ1, (30-50 Hz), 
gamma 2, γ2 (50-70 Hz), gamma3, γ3 (70-90 Hz), gamma4, γ4 (90-
110 Hz) and gamma5,  γ5 (110-128 Hz). Features include eight 
absolute spectral powers, eight relative spectral powers and 
twenty eight spectral power ratios. These features have been 
computed for ten seizure cases using a ten minute non 
overlapping window. From these forty four features the spectral 
power ratio from gamma band [30-128 Hz] [gamma1 (30-50 Hz) / 
gamma 3(70-90 Hz)] shows a prominent change for all the seizure 
cases during pre- ictal duration. The results also show that 
epileptic seizure is predicted in the second segment i.e. twenty 
minutes before the onset of seizure. Zone2 (temporal zone in this 
work) shows the highest change as compared to other zones so it 
is identified as the epileptogenic region in this work. 

Keywords- electroencephalogram (EEG); independent 
component analysis;  power spectral density;  seizure.  

I. INTRODUCTION  
Epilepsy is most common neurological disorder effecting 

around 2% of population. Various neurological disorders can 
be detected and forecasted by using the signals acquired from 
the brain [1]. There are different methods for acquisition of the 
brain signals. The brain signals can be acquired by using the 
scalp electrodes or by using the intracranial electrodes [2]. The 
intracranial electrodes are also called as in depth electrodes but 
the placement of these electrodes is a complicated procedure 
[3]. Scalp EEG signals are acquired by placing electrodes using 
10-20 placement system on the surface of brain. The scalp EEG 
(sEEG) signals contains a lot of information about  
neurological disorders [4].The information stored in EEG 
signals gives a motive to search for pre-cursive changes in 
sEEG signals before seizure onset [5]. Pre –ictal state is before 
the onset of seizure. Any seizure free duration of the signals is 
called as inter-ictal state [6]. The seizure prediction problem 
can be perceived as classification problem in which one class 
consists of pre-ictal signals and other class consists of inter-

ictal signals [7]. These EEG signals can be visually inspected 
by the neurologists for detecting an abnormality in brain 
function but the visual inspection of the scalp EEG signals is 
very time consuming task [8]. 

Based on common hypothesis that brainwave 
synchronization pattern is different in the pre-ictal and inter-
ictal state most current seizure prediction techniques can be 
illustrated by extracting features from EEG and then data 
driven machine algorithm is used to classify them into pre- ictal 
and inter- ictal state [9,10]. The most commonly used feature 
for the seizure prediction are variance, complexity, Hurst 
exponent, entropy, accumulated energy, correlation and 
coherence [11-13]. It is known that power spectral density 
(PSD) of EEG signal is affected before and during the seizure 
[14].  

The main drawback of using the power spectral density is 
that false prediction rate is high because the power spectral 
density shows the considerable amount of change in the inter-
ictal period as well [15]. The other drawback is that the signal 
under consideration for analysis is the signal that is the average 
signal from all the channels.  

The main contribution of this paper is that it develops a 
patient specific algorithm that can readily predict the epileptic 
seizure and identify the epileptogenic region. The EEG signals 
under consideration are the signals from different regions of the 
brain. Total forty four features are extracted in context of 
seizure prediction and the best is identified to predict the 
seizure. 

This paper is structured as follows: Section II presents the 
complete methodology, the features calculated is explained in 
section III. Finally, results and conclusion are presented in 
Section IV and Section V respectively. 

II. METHODOLOGY 

A. EEG database 
Database of epileptic patients in normal state (inter-ictal), 
before seizure (pre-ictal state) and during seizure (ictal state) 
are available on physionet website [16]. This database has     
been recorded by placing 10-20 electrodes on the human brain. 
The recordings are bipolar in nature and line noise has been 
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removed from the database. In bipolar recordings, the potential 
difference between the pair of electrodes have been recorded. 
The detailed dataset on which analysis has been carried out is 
shown in Table. 1. 

   TABLE. 1         DETAILS OF DATABASE 

S.No File Name Gender Age(Years) 
1 chb01_02 F 11 
2 chb01_03 F 11 
3 chb02_16+ M 11 
4 chb02_17 M 11 
5 chb02_18 M 11 
6 chb02_19 M 11 
7 chb04_05 M 22 
8 chb04_05 M 22 
9 chb04_08 M 22 
10 chb04_08 M 22 

B. Materials and methods 
For physionet database 60 minutes recording preceding the 
seizure are categorized as pre-ictal duration, 3 minutes and 30 
minutes duration during and after the seizure are categorized 
as ictal and post ictal duration respectively and any other 
duration of EEG signal is categorized as inter-ictal duration 
[17]. The main aim of the paper is to differentiate between 
pre-ictal and inter-ictal duration and the region of the brain 
showing the highest variation.    

The complete methodology describes the pre-processing of 
EEG signals, division of brain region into five zones for 
extraction of five average signals, window based signal 
processing, separation of eight frequency bands, extraction of 
forty four non-linear features from eight frequency bands e 
different zones, selection of the best feature and zone showing 
the highest change. The complete methodology in the form of 
flow chart has been shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Flow chart of proposed algorithm 

1) Pre-processing  
Muscle and eye-blinks artifacts are removed from the EEG 
signals by using independent component analysis (ICA) [18]. 
The baseline correction to raw EEG signal is also applied 
during the pre-processing stage. 

2) Averaging of Signals 
For detection of epileptogenic region, the complete region of 
the brain has to be taken into consideration. The processing of 
23 channels information simultaneously is a tough task. To 
reduce the complexity level the complete region of the brain is 
divided into five zones which are frontal (F), Temporal (T), 
central(C), Parietal (P) and occipital (O) [19]. Average of 
signals from five zones results into five average signals as 
shown in Table II. 

            TABLE. II         ELECTRODE PLACEMENT AS PER 10-20 SYSTEM 

Zones Electrodes Average Signal 
Zone 1 FP1, FP2, FZ, FP3 s1 
Zone 2  F7, T7, FT9 s2 
Zone 3  C3, P3, C4, P4, C8,P8, Cz, Pz, P7 s3 
Zone 4 F1, F8, FT10, FT8, T8 s4 
Zone 5 O1, O2  s5 

 
3) Window based signal processing of each signal 

For prediction of the pre-ictal duration window based signal 
processing has been used. Input signal is divided into non-
overlapping segments of 10-minute duration. Forty minute 
pre-ictal duration is considered as four segments of ten 
minutes duration each (10*60*256=153600 samples).  

4) Separation of eight frequency bands from five average 
signals 
Frequency bands of EEG signals contains a lot of information 
about the internal mental states of human brain. There are total 
four frequency bands theta, θ, (4-8 Hz), alpha, α, (8-13 Hz), 
beta, β, (13- 30 Hz) and gamma, γ, (30-128 Hz). The gamma 
band is further separated into five frequency bands namely γ1 
(30-50 Hz), γ2 (50-70 Hz), γ3 (70-90 Hz), γ4 (90-110 Hz), γ5 
(110-128 Hz) using band pass filter [20]. 
      The features extracted from these frequency bands can be 
used as a benchmark for the prediction of the epileptic seizure 
and detection of epileptogenic region. 

5) Feature Extraction from different frequency bands 
Total forty-four non-linear features are extracted from EEG 
signals in context of seizure prediction. These forty-four non-
linear features include spectral power from eight frequency 
bands, eight relative spectral power and twenty-eight spectral 
power ratios. 

6) Selection of best feature for seizure prediction and 
epileptogenic region identification 
The absolute spectral power and spectral power ratios are not 
the promising features for the seizure prediction because these 
cannot discriminate between the inter-ictal and pre-ictal period 
for all the seizure cases. The spectral power ratio shows the 
strong predictability of the upcoming seizure.   

EEG Dataset 

Pre-processing of EEG signal for removal of unwanted 
artifacts and baseline removal 

              Five average signals from five zones of brain 

Window based signal processing of each signal (10-minute 
window) 

Separation of eight frequency bands from five average signals 

Extraction of forty-four non-linear features from each zone  

Selection of best feature for seizure prediction and 
epileptogenic region identification 
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III. EXTRACTED FEATURES FROM EEG SIGNAL 

A. Absolute spectral power 
The absolute power from eight frequency bands have been 

calculated  using (1): 

N
fSP i

i

2)(=                           (1) 

where Pi is the power from particular frequency band, Si is 
the EEG signal of ith segment and N is the total length of EEG 
signal. 

 The total absolute power from each frequency band has 
been calculated using (2): 

][log*)( =
i

ijtotal PP            (2) 

where Ptotal(j) is the total power in jth frequency band. 

B. Relative spectral power 
Relative power from eight frequency bands has been 
calculated by using (3): 
 

total

total
i P

iPRP )(=                           (3) 

where Ptotal(i) is the total power in particular band and Ptotal is 
the sum of powers from all the eight bands. 

C. Spectral power ratio 
This feature determines the ratio of power in different 
frequency bands. For eight frequency bands there will be 
twenty eight possible ratios. As there are eight frequency 
bands (θ, α, β, γ1, γ2, γ3 , γ4, γ5) so the twenty eight possible 
ratios are θ/α, θ/β, θ/γ1, θ/γ2, θ/γ3, θ/γ4, θ/γ5, α/β,  α /γ1, α 
/γ2, α /γ3, α /γ4, α /γ5, β /γ1, β /γ2, β /γ3, β /γ4, β /γ5,  γ1/γ2, 
γ1/γ3, γ1 /γ4,  γ1 /γ5, γ2/γ3, γ2 /γ4,  γ2 /γ5, γ3 /γ4,  γ3 /γ5, γ4 
/γ5. Power ratio has been calculated from powers of these 
frequency bands. 

IV. RESULTS  

The methodology describes in section II has been 
implemented using MATLAB. Five average signals of 
different regions of brain are shown in Fig 2. All computations 
are based on these five averaged signals. The closer view of 
these five signals for a short duration is shown in Fig 3 for 
better visibility. The advantage of taking these five averaged 
signals is that all parts of the brain are investigated 
simultaneously with less computational complexity. 

  

 
Figure 2.  Averaged five signals from five different regions of brain by taking 
complete signal 

Figure 3.  Averaged five signals from five different regions of brain by taking 
small duration signal 
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Forty-minute duration before the seizure is considered as 
pre-ictal duration [17]. For accurate prediction of seizure, a 
non-overlapping window of 10 minute duration has been used. 
So, the forty minute duration before seizure is divided into four 
segments. The analysis has been carried on the ten seizure 
cases of the database as mentioned in Table I. The average 
value (from ten seizure cases) of eight spectral powers from 

five zones for inter-ictal and pre- ictal recordings have been 
shown in Table III and Table IV respectively. From Table III 
and Table IV it can be observed that there is no uniformity 
between changes (increase or decrease) in spectral powers in 
inter-ictal and pre-ictal duration for all eight-frequency bands. 
In order to reduce the false prediction rate the relative spectral 
power and spectral power ratio has been calculated. 

TABLE. III                    POWER IN EIGHT FREQUENCY BANDS  DURING INTER-ICTAL STATE  

Power calculations from five zones during inter-ictal state in decibels (dB)
   Segments theta alpha beta gamma1 gamma2 gamma3 gamma4 gamma5 

 Zone 1 

Segment1 14.12 14.77 6.33 6.45 0.61 1.74 0.03 0.01 

Segment2 21.93 15.06 8.96 8.2 0.52 1.44 0.02 0 
Segment3 19.08 11.39 3.05 0.76 0.47 0.63 0.04 0.01 

Segment4 10.37 4.42 3.37 0.76 0.25 0.61 0.01 0 

 Zone 2 

Segment1 5.97 3.17 1.2 0.47 0.08 0.17 0.02 0.01 
Segment2 8.55 2.77 0.93 0.38 0.07 0.13 0 0 
Segment3 10.35 2.43 1.04 0.61 0.08 0.23 0.06 0.02 
Segment4 5.4 1.36 1.11 0.61 0.073 0.12 0 0 

 Zone3 

Segment1 7.5 5.35 2.15 0.75 0.03 0.16 0.06 0.02 
Segment2 6.6 5.46 2.12 0.65 0.02 0.09 0.04 0.01 
Segment3 7.01 4.81 2.32 0.89 0.03 0.15 0.05 0.02 
Segment4 9.28 6.44 3.98 0.89 0.07 0.4 0.17 0.07 

 Zone4 

Segment1 12 4.3 4.33 4.5 0.16 0.97 0.27 0.1 
Segment2 10.55 4.05 5.85 6.49 0.21 1.23 0.32 0.1 
Segment3 14.65 4.69 4.85 5.23 0.17 1.08 0.28 0.1 
Segment4 15.87 5.42 5.91 5.23 0.2 1.27 0.36 0.13 

 Zone5 

Segment1 15.72 9.5 3.72 2.49 0.13 1.22 0.41 0.19 
Segment2 13.94 8.56 2.69 0.97 0.05 0.69 0.13 0.06 
Segment3 14.59 8.31 3.58 2.77 0.101 1.04 0.16 0.07 

Segment4 18.23 9.84 5.03 2.77 0.17 1.54 0.52 0.24 

TABLE. IV                  POWER IN EIGHT FREQUENCY BANDS  DURING PRE-ICTAL STATE 

Power calculations from five zones during pre - ictal state in decibels (dB) 

    theta alpha beta gamma1 gamma2 gamma3 gamma4 gamma5 

Zone 1 

Segment1 19.12 7.04 11.72 14.31 0.43 2.35 0.92 0.36 
Segment2 22.41 3.78 13.09 17.52 0.43 2.15 0.76 0.29 
Segment3 18.06 4.02 15.24 19.23 0.55 2.83 1 0.37 
Segment4 10.15 7.09 12.81 19.23 0.43 2.08 0.76 0.27 

zone 2 

Segment1 5.04 2.77 5.23 6.67 0.41 0.53 1.33 0.57 
Segment2 3.86 2.63 3.35 3.78 0.21 0.1 0.42 0.19 
Segment3 4.29 2.85 3.6 3.78 0.22 0.06 0.52 0.23 

Segment4 4.92 2.67 4.33 3.78 0.28 0.04 0.55 0.21 

zone 3 

Segment1 8.44 6.11 4.3 2.05 0.06 0.36 0.15 0.06 
Segment2 5.27 8.46 5.66 3.85 0.03 0.16 0.06 0.03 

Segment3 5.67 7.53 5.37 2.15 0.03 0.17 0.06 0.04 
Segment4 8.17 6.57 5.44 2.11 0.06 0.26 0.09 0.04 

zone 4 

Segment1 34.91 13.7 10.73 7.79 1.36 0.23 0.36 0.13 
Segment2 7.98 4.46 7.15 9.48 1.56 0.27 0.46 0.17 
Segment3 12.2 5.09 7.67 9.24 1.67 0.28 0.47 0.16 
Segment4 31.37 7.24 7.74 9.24 1.6 0.23 0.38 0.14 

zone 5 

Segment1 16.21 8.72 5.29 4.21 0.19 0.46 1.48 0.19 
Segment2 13.06 8.73 4.43 3.18 0.15 0.43 1.41 0.17 
Segment3 13.36 9.05 4.69 3.48 0.15 0.41 1.24 0.16 
Segment4 15.06 8.29 3.92 3.48 0.11 0.24 0.97 0.1 
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Table V shows the results for spectral power ratio (γ1/γ3) 
for inter-ictal and pre-ictal period. 

TABLE. V          SPECTRAL POWER RATIO DURING INTER ICTAL STATE AND 
PRE-ICTAL STATE 

Spectral Power ratio from five zones 

    inter-ictal pre-ictal 
 Increase 

Zone 1 

segment1 3.7 6.06 2.36 

segment2 5.68 9.22 3.54 

segment3 1.2 6.77 5.57 

segment4 1.24 8.13 6.89 

Zone 2 

segment1 2.7 12.37 9.67 

segment2 2.9 59.75 56.85 

segment3 2.58 35.81 33.23 

segment4 5.02 34.13 29.11 

Zone3 

segment1 4.51 10.32 5.81 

segment2 6.73 23.35 16.62 

segment3 5.78 12.21 6.43 

segment4 2.22 8.07 5.85 

Zone4 

segment1 4.6 8.99 4.39 

segment2 5.27 14.34 9.07 

segment3 4.83 8.37 3.54 

segment4 4.1 7.3 3.2 

Zone5 

segment1 2.04 33.85 31.81 

segment2 1.4 38.61 37.21 

segment3 2.65 32.99 30.34 

segment4 1.79 34.64 32.85 
 

From Table V it is evident that the ratio of power in (γ1/γ3) 
frequency band shows a noticeable increment in the pre-ictal 
state. In addition, the highest change in the feature is observed 
from the zone 2, which is the epileptogenic region of the brain. 
The epileptogenic region in this work is the temporal region as 
zone 2 is representing the temporal region. 

The second notable point is that remarkable change in the 
pre-ictal and inter-ictal state is during segment 2. Segment 2 is 
twenty minutes before the onset of seizure. So, seizure is 
predicted twenty minutes prior to the onset. 

V. CONCLUSION 
In this paper an algorithm for seizure prediction and 
epileptogenic region identification using bipolar EEG signals 
from different regions of the brain has been proposed. Forty 
four non-linear features including absolute spectral power, 
relative spectral power and spectral power ratio are extracted 
from eight frequency bands of EEG signals. The results are 
based on the findings that the absolute spectral power and 
relative spectral power does not shows much relevance for 
seizure prediction and region identification because the 

features changes in inter-ictal duration also. The spectral 
power ratio (γ1/γ3) proves to be the most relevant feature for 
seizure prediction and region identification because the clear 
demarcation exists between the pre-ictal and inter-ictal state. 
The proposed algorithm also identifies zone 2 as epileptogenic 
region which is temporal lobe. The large sample size and the 
machine learning algorithms can help to generalize and 
validate the promising results obtained in this work. Future 
work will be carried out to identify the particular electrode 
from the set of electrodes. Similar methodology can also be 
explored for detection of other neurological disorders. 
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